Computing total edge irregularity strength for heptagonal snake graph and related graphs

نویسندگان

چکیده

A labeling of edges and vertices a simple graph \(G(V,E)\) by mapping \(\Lambda :V\left( G \right) \cup E\left( \to \left\{ { 1,2,3, \ldots ,\Psi } \right\}\) provided that any two pair have distinct weights is called an edge irregular total \(\Psi\)-labeling. If \(\Psi\) minimum \(G\) admits -labelling, then the irregularity strength (TEIS) denoted \(\mathrm{tes}\left(G\right).\) In this paper, we start defining new families graphs heptagonal snake \( {\mathrm{HPS}}_{\mathrm{n}} \),the double D({\mathrm{HPS}}_{\mathrm{n}}), \) \(l-\) multiple graph\( L({\mathrm{HPS}}_{\mathrm{n}}) \). We follow some steps to deduce exact value TEISs for families. first labeled vertices, were such are different. After that, calculated

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs

Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...

متن کامل

On the total edge irregularity strength of zigzag graphs

An edge irregular total k-labeling of a graph G is a labeling of the vertices and edges with labels 1, 2, . . . , k such that the weights of any two different edges are distinct, where the weight of an edge is the sum of the label of the edge itself and the labels of its two end vertices. The minimum k for which the graph G has an edge irregular total k-labeling is called the total edge irregul...

متن کامل

On the total edge irregularity strength of hexagonal grid graphs

An edge irregular total k-labeling of a graph G = (V,E) is a labeling φ : V ∪ E → {1, 2, . . . , k} such that the total edge-weights wt(xy) = φ(x) + φ(xy) + φ(y) are different for all pairs of distinct edges. The minimum k for which the graph G has an edge irregular total k-labeling is called the total edge irregularity strength of G. In this paper, we determined the exact values of the total e...

متن کامل

Total vertex irregularity strength of wheel related graphs

For a simple graph G with vertex set V (G) and edge set E(G), a labeling φ : V (G) ∪ E(G) −→ {1, 2, . . . , k} is called a vertex irregular total klabeling of G if for any two different vertices x and y, their weights wt(x) ∗ The work was supported by the Higher Education Commission Pakistan. 148 A. AHMAD, K.M. AWAN, I. JAVAID AND SLAMIN and wt(y) are distinct. The weight wt(x) of a vertex x in...

متن کامل

Total edge irregularity strength of trees

A total edge-irregular k-labelling ξ : V (G) ∪ E(G) → {1, 2, . . . , k} of a graph G is a labelling of vertices and edges of G in such a way that for any different edges e and f their weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The minimum k for which a graph G has a total edge-irregular k-lab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Soft Computing

سال: 2021

ISSN: ['1433-7479', '1432-7643']

DOI: https://doi.org/10.1007/s00500-021-06364-2